On the L Index of Spin Dirac Operators on Conical Manifolds
نویسندگان
چکیده
We compute the index of the Dirac operator on spin Riemannian manifolds with conical singularities, acting from L(Σ) to Lq(Σ−) with p, q > 1. When 1 + np − n q > 0 we obtain the usual Atiyah-Patodi-Singer formula, but with a spectral cut at n+1 2 − n q instead of 0 in the definition of the eta invariant. In particular we reprove Chou’s formula for the L index. For 1+ np − n q ≤ 0 the index formula contains an extra term related to the Calderón projector. Sur l’indice L des opérateurs de Dirac spinoriels sur des variétés coniques Résumé. Nous calculons l’indice de l’opérateur de Dirac sur des variétés Riemaniennes spinorielles à singularités coniques, agissant de Lp(Σ+) dans Lq(Σ−) avec p, q > 1. Pour 1 + np − n q > 0 nous obtenons la formule de AtiyahPatodi-Singer, mais avec une coupure spectrale en n+1 2 − n q à la place de 0 dans la définition de l’invariant êta. En particulier nous retrouvons la formule de Chou pour l’indice L2. Pour 1 + np − n q ≤ 0 la formule d’indice contient un nouveau terme lié au projecteur de Calderón.
منابع مشابه
On index formulas for manifolds with metric horns
In this paper we discuss the index problem for geometric differential operators (Spin-Dirac operator, Gauß-Bonnet operator, Signature operator) on manifolds with metric horns. On singular manifolds these operators in general do not have unique closed extensions. But there always exist two extremal extensions Dmin and Dmax. We describe the quotient D(Dmax)/D(Dmin) explicitely in geometric resp. ...
متن کاملThe Higher Spin Dirac Operators on 3-Dimensional Manifolds
We study the higher spin Dirac operators on 3-dimensional manifolds and show that there exist two Laplace type operators for each associated bundle. Furthermore, we give lower bound estimations for the first eigenvalues of these Laplace type operators.
متن کاملThe Dirac Operator on Lorentzian Spin Manifolds and the Huygens Property
We consider the Dirac operator D of a Lorentzian spin manifold of even dimension n 4. We prove, that the square D 2 of the Dirac operator on plane wave manifolds and the shifted operator D 2 ? K on Lorentzian space forms of constant sectional curvature K are of Huygens type. Furthermore, we study the Huygens property for coupled Dirac operators on 4-dimensional Lorentzian spin manifolds.
متن کاملTwistor Spinors on Lorentzian Manifolds, Cr-geometry and Feeerman Spaces
The paper deals with twistor spinors on Lorentzian manifolds. In particular , we explain a relation between a certain class of Lorentzian twistor spinors and the Feeerman spaces of strictly pseudoconvex spin manifolds which appear in CR-geometry. Let (M n;k ; g) be a n-dimensional smooth semi-Riemannian spin manifold of index k with the spinor bundle S. There are two conformally covariant diffe...
متن کاملAn index theorem for Toeplitz operators on odd-dimensional manifolds with boundary
We establish an index theorem for Toeplitz operators on odd-dimensional spin manifolds with boundary. It may be thought of as an odd-dimensional analogue of the Atiyah–Patodi–Singer index theorem for Dirac operators on manifolds with boundary. In particular, there occurs naturally an invariant of η type associated to K1 representatives on even-dimensional manifolds, which should be of independe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004